If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x^2)+(16x)-9=0
a = 1; b = 16; c = -9;
Δ = b2-4ac
Δ = 162-4·1·(-9)
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{73}}{2*1}=\frac{-16-2\sqrt{73}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{73}}{2*1}=\frac{-16+2\sqrt{73}}{2} $
| x^2=-57 | | b2-b-72=0 | | k+1220,k=15 | | 12-10n=2(n-1) | | b+84=7b | | b2-6-72=0 | | 1/8x+8=16 | | v+24=3v | | 11=f÷2 | | 2t-1=15+3t | | 8=a/6 | | x/4+x/3=3/8 | | 7(7c+1)-4c=1 | | -6(y-2)=-9y+27 | | 11x-3=4+3x | | -5x-10=10x+7 | | -4(m+3)=-40 | | X=25x-(10x250) | | 9p-4=3p | | x+.75=2 | | 9=p/4 | | -7a=5=7a | | -n/3+1=0 | | 2x+4=-4x-5 | | 3x=x*x*x | | 2.5(a=40)-3.2=14.3 | | X(11+x)=180 | | -n+2n=-5+2n | | 25=-1/4n-3 | | 3n=36-5 | | 2.5(a+40-3.2=14.3 | | -6x+4(x+4)=-2 |